楕円曲線暗号の実装 3
点の演算を実装する(加算,倍加)
点の加法と倍加
2つの点 $P=(x_1, y_1)$ と $Q=(x_2, y_2)$ を考える(無限遠点でない). まず,P, Q を結ぶ直線を考える.この直線は傾き $\lambda$ を用いて以下のように表す
$$y = \lambda x + c$$
傾き $\lambda$ は以下のように定義される.
- $P \neq Q$
- $\lambda = \frac{y_2-y_1}{x_2-x_1}$
- $P=Q$
- $\lambda = \frac{3x_1^2 + a}{2y_1}$
楕円曲線上では, P+Q は 3 つめの交点 R の x 軸に対して反転した点として定義される.
class EllipticCurve:
def __init__(self, a, b, p):
self.a = a
self.b = b
self.p = p
if 4 * a**3 + 27 * b**2 == 0:
raise Exception("singular curve")
def contain(self, point):
if(point.infinity):
return True
x, y = point.x, point.y
return (y**2 - x**3 -self.a*x - self.b) % self.p == 0
class Point:
def __init__(self, x=None, y=None, curve=None, infinity=False):
self.x = x
self.y = y
self.curve = curve
self.infinity = infinity
if not self.infinity and curve is not None:
if not curve.contain(self):
raise Exception("not on curve")
def __eq__(self, other):
if self.infinity and other.infinity:
return True
if self.infinity or other.infinity:
return False
return (self.x, self.y, self.curve) == (other.x, other.y, other.curve)
def __repr__(self):
if self.infinity:
return "Point(infinity)"
return f"Point({self.x}, {self.y})"
def __add__(self, other):
if self.curve != other.curve:
raise Exception("mismatch curve")
if self.infinity:
return other
if other.infinity:
return self
p = self.curve.p
if self.x == other.x and self.y != other.y:
return Point(infinity=True, curve=self.curve)
if self != other:
lam = mod_div(other.y - self.y, other.x - self.x, p)
else:
if self.y == 0:
return Point(infinity=True, curve=self.curve)
lam = mod_div(3 * self.x**2 + self.curve.a, 2 * self.y, p)
x3 = (lam**2 - self.x - other.x) % p
y3 = (lam * (self.x - x3) - self.y) % p
return Point(x3, y3, self.curve)
def __rmul__(self, k):
result = Point(infinity=True, curve=self.curve)
addend = self
while k:
if k&1:
result += addend
addend = addend + addend
k >>= 1
return result
def mod_add(a, b, p):
return (a + b) % p
def mod_sub(a, b, p):
return (a - b) % p
def mod_mul(a, b, p):
return (a * b) % p
def mod_inv(a, p):
if a == 0:
raise Exception("zero inverse")
return (pow(a, p-2, p))
def mod_div(a, b, p):
return mod_mul(a, mod_inv(b, p), p)
if __name__ == "__main__":
p = 97
a = 2
b = 3
curve = EllipticCurve(a, b, p)
P = Point(17, 10, curve)
Q = Point(95, 31, curve)
R = P + Q
print(f"{P} + {Q} = {R}")
assert R == Point(1, 54, curve)
# 同一点の倍加テスト
R = P + P
print(f"{P} + {P} = {R}")
assert R == Point(32, 90, curve)
# スカラー倍テスト(例: 7 * P)
R = 7 * P
print(f"7 * {P} = {R}")
assert R == Point(49, 34, curve)
print("ok")
結果は以下
Point(17, 10) + Point(95, 31) = Point(1, 54)
Point(17, 10) + Point(17, 10) = Point(32, 90)
7 * Point(17, 10) = Point(49, 34)
ok
よさそう